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ABSTRACT 

Author: Sethunath, Deepak. MS 

Institution: Purdue University 

Degree Received: May 2018 

Title:  Detection of Histological Features in Liver Biopsy Images to Help Identify Non-Alcoholic 

Fatty Liver Disease. 

Major Professor: Mihran Tuceryan 

 

This thesis explores a minimally invasive approach of diagnosing Non-Alcoholic Fatty Liver 

Disease (NAFLD) on mice and humans which can be useful for pathologists while performing 

their diagnosis. NAFLD is a spectrum of diseases going from least severe to most severe – steatosis, 

steatohepatitis, fibrosis and finally cirrhosis. This disease primarily results from fat deposition in 

the liver which is unrelated to alcohol or viral causes. In general, it affects individuals having a 

combination of at least three of the five metabolic syndromes namely, obesity, hypertension, 

diabetes, hypertriglyceridemia, and hyperlipidemia. Given how common these metabolic 

syndromes have become, the rate of NAFLD has increased dramatically over the years affecting 

about three-quarters of all obese individuals including many children, making it one of the most 

common diseases in United States. Our study focuses on building various computational models 

which help identify different histological features in a liver biopsy image, thereby analyzing if a 

person is affected by NAFLD or not. Here, we develop and validate the performance of automated 

classifiers built using image processing and machine learning methods for detection of macro- and 

microsteatosis, lobular and portal inflammation and also categorize different types fibrosis in 

murine and human fatty liver disease and study the correlation of automated quantification of 

macrosteatosis, lobular and portal inflammation, and fibrosis (amount of collagen) with expert 

pathologist’s semi-quantitative grades. Our research for macrosteatosis and microsteatosis 

prediction shows the model’s precision and sensitivity as 94.2%, 95% for macrosteatosis and 

79.2%, 77% for microsteatosis. Our models detect lobular and portal inflammation(s) with a 

precision, sensitivity of 79.6%, 77.1% for lobular inflammation and 86%, 90.4% for portal 

inflammation. We also present the first study on identification of the six different types of fibrosis 

having a precision of 85.6% for normal fibrosis and >70% for portal fibrosis, periportal fibrosis, 

pericellular fibrosis, bridging fibrosis and cirrhosis. We have also quantified the amount of 

collagen in a liver biopsy and compared it to the pathologist semi-quantitative fibrosis grade. 
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1. INTRODUCTION 

  This thesis involves building classifiers to detect different histological features in a liver 

biopsy image which in turn will help in the identification of non-alcoholic fatty liver disease 

(NAFLD). This is a novel approach of detecting NAFLD, predominantly because we not only 

identify steatosis or inflammation in liver but also classify different types of fibrosis, and quantify 

the amount of fibrosis. 

 Motivation 

  Medical technology is imperative for the betterment of people’s health and well-being. It 

also contributes billions of dollars to the economy. Innovative technology is a perquisite to 

healthcare. 

  NAFLD is subdivided into nonalcoholic fatty liver (NAFL) and nonalcoholic 

steatohepatitis (NASH) although these are considered to be part of a spectrum. In NAFL, hepatic 

steatosis is present without evidence of hepatocyte ballooning degeneration or significant 

inflammation, whereas in NASH, hepatic steatosis is associated with hepatocyte ballooning 

degeneration and hepatic inflammation that may be histologically indistinguishable from alcoholic 

steatohepatitis (1). 

  According to Younossi et al. NAFLD is one of the most important causes of liver disease 

worldwide in adults and children due to the pandemic spread of obesity. “Global prevalence of 

NAFLD is estimated at 24%; the highest rates are reported from South America and the Middle 

East, followed by Asia, the USA and Europe. The large volume of patients sets NAFLD apart from 

other liver disease, meaning the major focus of clinical care is discerning those at highest risk of 

progressive liver disease. Being overweight in childhood and adolescence is associated with 

increased risk of NAFLD later in life; consequently, the threshold of liver-related morbidity and/or 

mortality is reached at a younger age. Patients with NAFLD have a high risk of liver-related 

morbidity and mortality along with metabolic comorbidities and might place a growing strain on 

health-care systems” (2). 

Liver biopsy is the gold standard for the diagnosis of NAFLD and has been accepted 

worldwide. The nonalcoholic fatty liver activity score (NAS) is a system of histologic evaluation 
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that includes the full spectrum of nonalcoholic fatty liver disease and can assess changes following 

therapy in both adult and pediatric patients. The NAS is the unweighted sum of scores for Steatosis, 

Lobular inflammation and Ballooning. The NAS ranges from 0 to 8. Fibrosis is not included in the 

NAS (1).  

  In recent years, different pathologic criteria have been used to carry out epidemiological 

studies or to assess the efficacy of different medications in clinical trials of patients with NASH 

Despite their increasing use, the interprotocol agreements of these pathological criteria have not 

been assessed (3). This leads to considerable differences in the scoring of histological feature 

grades by various pathologists. These grades can differ, either when comparing different 

pathologists grading the same liver sample or a single pathologist grading the same liver sample 

at different times. There are several studies which discuss the consistencies  and the inconsistencies 

in pathologist evaluation (4). 

 Problem Statement 

  The purpose of this study is to build an automated tool which can help in the identification 

of Non-alcoholic Fatty Liver Disease (NAFLD) by detection and quantification of different 

histological features like steatosis, inflammation and fibrosis. Steatosis detection involves the 

determination of the two different types – microsteatosis and macrosteatosis. Inflammation 

detection involves the determination of the two different types of inflammation, i.e., portal and 

lobular inflammation. Apart from this, categorization of different types of fibrosis is required to 

determine the level of NAFLD. The identification of these different histological features enhances 

the diagnosis of liver disease and gives accurate measures of NAFLD. This research is an extension 

of the previous work done by Morusu et al. (5, 6) at Purdue University and Vanderbeck et al. (7-

9) at the University of Wisconsin where the use of these automated methods to detect and quantify 

histological features in liver biopsy images to aid in the diagnosis of NAFLD have been assessed. 

 Contributions of this thesis 

  This study deals with the detection of different histological features which aid in the 

diagnosis of NAFLD. The approach involves taking expert pathologists annotations as training 

labels (of different histopathological and anatomical structures) in liver biopsy images and perform 
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image processing on the set of liver biopsy slides, thereby extracting different set of features which 

uniquely identify an area within them. These features are computed on the expert pathologist 

annotated areas to build different machine learning models which can then be used to correctly 

classify the type of histological feature present in liver biopsies. This research is an extension of 

previous work done by Morusu et al. (5, 6) and therefore, my contributions are listed below. 

 

 Enhancing the Web Annotation Tool 

The web annotation tool used by pathologists for extraction of annotations in a 

liver biopsy has been updated. The pathologist can now annotate different types of fibrosis, 

other than the existing set of histological and anatomical regions present in a liver biopsy. 

The annotation tool now has a rich and responsive user interface that can handle the usage 

of it in different resolutions.  

 

 Identification of steatosis in liver biopsies 

The detection and quantification of steatosis in liver biopsies play an important role 

in the detection of NAFLD as it is the instigating process of the same. Studies have shown 

that 5 to 15% of patients with NAFLD present with established cirrhosis on liver biopsy 

and that 4 to 5% of individuals with isolated steatosis eventually developed cirrhosis (10). 

Steatosis detection involves the detection of both macrosteatosis and microsteatosis. This 

study enhances the performance of previous classifiers built by Vanderbeck et al. (7-9) and 

Morusu et al. (5, 6) to detect macrosteatosis and also performs an analysis to correlate the 

results with semi-quantitative grades given by expert pathologists. Apart from this, our 

study proposes a new method to detect the presence of microsteatosis in liver biopsies. The 

models developed as part of this study detect steatosis in liver biopsies with precision, 

sensitivity and ROC area of 94%, 95% and 99.1% for macrosteatosis and 79.2%, 77%, 

78.1% for microsteatosis respectively. The correlation results for macrosteatosis quantified 

by our model and the expert semi-quantitative grade for steatosis has a coefficient of 

determination (𝑅2) value of 0.905.  
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 Identification of Inflammation in liver biopsies 

The detection and quantification of inflammation in human liver biopsies is 

something that has also been addressed as part of this research. There are two types of 

inflammation detection that has been done, namely, lobular inflammation and portal 

inflammation. While both of them are equally important in the detection of NAFLD in 

children, the former plays a very important role in detecting NAFLD in adults as well. In 

this work, improvements have been made to the supervised machine learning models built 

by Morusu et al. as part of their study to detect inflammation (11). The models developed 

as part of this study detect inflammation in human liver biopsies with precision, sensitivity 

and ROC area of 79.6%, 77.1% and 93.2% for lobular inflammation and 86%, 90.4%,   

92.6% for portal inflammation. The correlation results for both types of inflammation 

detected and quantified by our model and the expert semi-quantitative grade for both 

lobular and portal inflammation have a spearman coefficient of determination of 0.71 and 

0.85 respectively. 

     

 Identification of Fibrosis in liver biopsies 

The detection of fibrosis and its types in human liver biopsies is the next problem 

addressed in this research. Fibrosis is essential in diagnosing NAFLD and it is classified 

into various types based on the amount and location of collagen present. This study 

computes the amount of collagen content and performs correlation with the pathologists’ 

semi-quantitative grades given to the human liver slides. It also presents the first study to 

detect different types of fibrosis namely, normal fibrosis, pericellular fibrosis, portal 

fibrosis, periportal fibrosis, bridging fibrosis and cirrhosis. 
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2. BACKGROUND 

 Liver Anatomy 

  Liver is the largest organ and gland in the human body accounting to about 1/50th body 

weight of a normal adult. The liver occupies the upper right quadrant of the abdomen to the right 

of the stomach and immediately below the diaphragm and is divided by the falciform ligament into 

a larger right lobe and a smaller left lobe. The liver has association with the gastrointestinal tract, 

with stomach related to the left hepatic lobe by way of gastrohepatic ligament which has neural 

and vascular structures including the hepatic division of the vagus nerve. The transverse colon is 

sometimes near or in direct contact with right lobe and additionally, duodenum and portal 

structures are associated with the hepatoduodenal ligament and porta hepatis thus making liver a 

major highway for transporting oxygenated and deoxygenated blood from these organs to the heart 

(12). At the microscopic level, the liver cells (known as hepatocytes) are arranged into lobules. 

These form the structural units of the liver. The anatomical lobules are hexagonal-shaped and are 

drained by central veins (Figure 2-1). The periphery of each of the hexagons consists of three 

structures broadly known as the portal triad which comprises of the following: 

 Arteriole – a branch of the hepatic artery entering the liver. 

 Venule – a branch of the hepatic portal vein entering the liver. 

 Bile duct – branch of the bile duct leaving the liver (13). 

 

 

Figure 2-1 : Portal Triad – regions of connective tissue which include branches of bile duct, portal 

vein and hepatic artery (13). 
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 The liver aids the digestion of food thereby producing vital nutrients and excretion of waste 

material from the body. The liver plays several vital roles such as metabolizing the breakdown 

products of digestion and detoxifying substances that are harmful to the body. The liver also 

provides essential energy producing substances. The liver controls the production and excretion of 

cholesterol and metabolizes alcohol into mild toxin. It also performs many important functions 

including storing iron, maintain hormonal balance, producing immune factors, regulating blood 

clotting, and producing bile (14). 

 Liver Biopsy 

  Liver biopsy is a minimally invasive method of taking a small section of tissue from the 

liver and looking under the microscope for signs of damage or disease. It is the gold standard for 

diagnosing NASH (non-alcoholic steatohepatitis) and assessing stages of fibrosis patients with 

NAFLD (non-alcoholic fatty acid liver disease). NAFLD is a spectrum of diseases varying from 

least severe steatosis, to more severe and progressive steatohepatitis to the most severe phenotype 

of disease; NASH with advanced fibrosis and cirrhosis. It is mainly caused by deposition of fat in 

the liver and it affects individuals with metabolic disorders like obesity, hypertension, diabetes, 

hypertriglyceridemia and hyperlipidemia. 

Liver biopsy procedure is conducted to determine the cause of abnormal liver function, 

swelling or enlargement of the liver and jaundice. These signs and symptoms are due to a variety 

of conditions including cirrhosis, hepatitis or cancer (15). 

  The most commonly used liver biopsy method is percutaneous biopsy where ultrasound 

imaging is used to guide a needle into the liver. A numbing medication is injected to the area where 

the needle is inserted by making small incision near the bottom of the rib cage on the right side are 

done to obtain the liver sample. The tissue sample is fixed in zinc tris at 4°C for 24 hours followed 

by chemical processing steps after which the sample is divided into sections of 5 micrometer 

thickness for further analysis under a microscope by different staining methods. The current study 

used two stains: 

1. Hematoxylin and Eosin Stain (H&E) stain helps in making the biopsy section turn pink 

and blue shades which aids in identifying different areas of the cells. Cell nuclei appear in 

shade of blue and the cytoplasm in pink. 
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2. Trichrome Stain (TC) stain turns the biopsy section into three colors: red, blue and pink. 

Cell nuclei appear in blackish to brown color while fibrosis, the connective tissue which is 

scarred due to injury appears in blue and cytoplasm appears red in color. 

 

 

Figure 2-2 : An example of a liver biopsy. A. H&E Stain image B. TC Stain image 
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 Histological Features of Non Alcoholic Fatty Liver Disease 

Excessive fat accumulation in the liver of a patient without a history of alcohol abuse is a 

condition known as Non-Alcoholic Fatty acid Liver Disease (NAFLD). It is associated with 

hepatic and systemic insulin resistance and is considered the hepatic manifestation of metabolic 

syndrome. Occurrence of NAFLD among the world population is increasing steadily in 

concurrence with increased prevalence of obesity. Approximately 30% of adult populations of 

developed countries suffer from NAFLD which has also become prevalent in children with obesity. 

NAFLD is categorized into simple steatosis, in which only hepatocellular steatosis occurs and 

nonalcoholic steatohepatitis (NASH), in which both necro inflammatory reactions and 

hepatocellular steatosis occur. NASH accounts for about one third of NAFLD cases and is a 

progressive disease that could advance to liver cirrhosis and liver carcinoma. Additionally, 

NAFLD is associated with insulin resistance, diabetes, and hyperlipidemia (16). 

There are three scoring systems, namely, the Brunt system, the NASH CRN system and the 

SAF system. The Brunt system is a method for grading the severity of NASH and is based on 

criteria of steatohepatitis. The grading of steatohepatitis into mild, moderate and severe was based 

on an overall impression of the severity of steatosis, inflammation and ballooning, but most of the 

weight was given to ballooning. The NASH CRN system is a method developed to detect NAFLD 

histological changes using clinical trials and describe natural history from pediatric and adult 

pattern of NAFLD. NAS (NAFLD Activity Score) is a summary of overall severity of injury and 

is defined as the unweighted sum of the steatosis, lobular inflammation and ballooning scores that 

varies from (0 to 8) (17). 

Histopathological features of NAFLD/NASH in adults are steatosis, lobular and portal 

inflammation, hepatocellular ballooning, fibrosis, glycogenated nuclei, apoptotic hepatocytes, 

MDBs, iron deposition and megamitochondria. 

 

 Steatosis: Hepatocellular steatosis is an indication of NAFLD of the presence of steatosis 

in more than 5% of hepatocytes is required for diagnosis of NAFLD. It is classified into 

two types: macro vesicular and micro vesicular steatosis. Macro vesicular steatosis is 

characterized by the presence of a single large fat droplet or multiple smaller fat droplets 

that occupy the cytoplasm of hepatocytes. Micro vesicular is characterized by presence of 
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tiny fat droplets with the nuclei centrally located in the cell. Macro vesicular is the most 

prevalent form of steatosis with micro vesicular steatosis accounting to approximately 

10% of liver biopsies from patients with NAFLD. 

 

 Lobular inflammation: Acinar (lobular) inflammation in NAFLD is a mild response from 

mixed, acute and chronic inflammatory-cell infiltrate composed of lymphocytes, 

monocytes, macrophages and neutrophils with sinusoids and eosinophils occasionally 

present. In NASH, the inflammatory cells are usually seen near the site of injured 

hepatocytes. Lobular inflammation is evaluated by measuring the number of necro 

inflammatory foci per 20x optical field, and by definition, it measures the cluster of 

inflammatory nuclei that appear spatially together. 

 

 Portal Inflammation: In adult NAFLD, portal inflammation is usually chronic and mild. 

When lobular inflammation is disproportionate to portal inflammation, it is an indication 

of chronic viral hepatitis C. In a different scenario, suspicion of alcoholic or cholestatic 

liver disease is increased when neutrophils infiltrate into the portal and periportal regions. 

Also, increased portal inflammation is a marker of advanced disease in untreated NAFLD 

patients (18). 

 

 Hepatocyte Ballooning: It is characterized by the increase in hepatocyte size of 2 to 3 

times its normal healthy size and presence of Mallory’s hyaline in cytoplasm indicating 

damaged intermediate filaments within hepatocytes due to disintegration of nuclei in 

ballooned cells (16). 

 

 Fibrosis: In NASH, perisinusoidal and pericellular fibrosis is a characteristic of fibrosis 

which usually begins in zone 3 which is evaluated by reticulin staining. In NAFLD it is 

usually observed with an active inflammatory reaction. By general definition, it is the 

development of excessive fibrous tissue by the liver when hepatocytes are damaged 

eventually leading to cirrhosis. 
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 Previous Work 

There have been various research studies to detect NAFLD. Some of them use invasive 

methods while others use non-invasive techniques. There have been multiple studies to detect 

macrosteatosis and fibrosis, some of them even trying to quantify them based on different scoring 

patterns. Apart from Vanderbeck et al. (7-9) and Morusu et al.’s (5, 6) continuous study to 

automatically analyze macrosteatosis and lobular and portal inflammation, there has been no other 

study that has had a big impact. The automatic detection of different types of fibrosis detection 

and of microsteatosis is a new contribution of this thesis.   

2.4.1 Steatosis 

  This section gives a brief overview of the literature associated to the detection of steatosis 

in liver biopsies. In the previous studies done by Vanderbeck et al. (7-9) and Morusu et al. (5, 6) 

detection of macrosteatosis has been done to some extent. In this research, our work optimizes and 

improves their approaches in macrosteatosis detection. In addition, it detects microsteatosis. 

Steatosis is a common liver disease associated with social and genetic factors which can turn into 

cirrhosis. Early detection and quantification is necessary as further delay would evolve it into 

cirrhosis.  

  Ribeiro et al. describes a new non-invasive computer aided diagnosis (CAD) system for 

steatosis classification and analysis where Bayes factor, obtained from objective intensity and 

textural features extracted from Ultrasound (US) images of liver, is computed on a local and global 

basis (19). Each of the US images were stored in the Digital Imaging and Communications in 

Medicine (DICOM) format and a region of interest (ROI) of approximately 100 x 100 were 

extracted. The main features were extracted using the wavelet transform and autoregressive (AR) 

models. A sum of 36 features were extracted from ROI and four types of classifiers (KNN, Bayes 

and SVM (polynomial and radial-basis kernel)) were applied to the images. The procedure has 

shown an overall accuracy of 93.54% with sensitivity of 95.83% and 85.71% for normal and 

steatosis class for 75 patients. Global and local assessment of liver tissue based on the results of 

Bayes factor provides useful information to the physicians about the confidence of class. Further 

studies are needed to validate the results for more number of patients. 

  In another research paper, Homeyer et al. describe a new method in identification of fat 

droplets in histological images derived from liver biopsy (20). It follows a 2-step process, one that 
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classifies individual pixels as either background or tissue and the second step classifies blobs of 

connected background pixels into fat droplets or empty spaces based on their shape. Typically, 

background images should be brighter and less saturated than tissue pixels therefore each pixel is 

classified by thresholds to their brightness and saturation values. In the second step, the blob 

classification step typically is done by performing a connected component labeling operation 

which identifies locally connected background pixel as individual blobs followed by a 

classification operation that classifies all blobs into fat droplets or empty spaces. Here the classifier 

used for the second step is Random Forest Classifier with adjacency statistics, size and eccentricity 

being the features. Correlation to pathologist’s scoring was not used to assess accuracy but 

repeated random sub-sampling validation of fat droplets was used that showed 90% sensitivity and 

specificity. 

 

2.4.2 Inflammation 

  This section discusses the existing methods for detection of inflammation. In the previous 

studies done by Vanderbeck et al. (7-9) and Morusu et al. (5, 6) detection of inflammation has 

been done to some extent and this research optimizes and improves their approaches. 

  In a review paper, Robinson et al. discusses about liver immunology and its role in 

inflammation and homeostasis and highlights few key concepts like the myeloid and lymphoid 

resident immune cell populations are in large proportions in liver (21). According to this paper, 

inflammatory mechanisms are responsible for maintaining local organ and systemic hemostasis in 

a healthy liver. But excessive or dysregulated inflammatory activity leads to the pathology 

associated with autoimmune and infectious hepatic disease. The hepatic environment is highly 

influenced by high fat and carbohydrate diet in the hepatic blood supply. Carbohydrates are usually 

stored as glycogen whereas, dietary fat transported from the gut are chylomicrons that are 

processed into lipoproteins. The lipoproteins and carbs contain cholesterol, triglycerides and 

succinate that trigger inflammatory response by promoting TLR signaling and inflammasome 

activation. This metabolic regulation of inflammation is important in non-alcoholic fatty liver 

disease. The detection of inflammation is possible by liver biopsy which is a minimally invasive 

diagnostic test currently considered to be the “gold standard”. 
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  Generally, inflammation is an immediate response to an injury near the site. A lobular 

inflammation in NAFLD is a mild response from mixed acute and chronic inflammatory-cell 

infiltrate composed of lymphocytes, monocytes, macrophages and neutrophils. A portal 

inflammation in NAFLD is a chronic to mild response and it is an accumulation of neutrophils 

infiltrate in portal and periportal regions. Previously, the detection of different kinds of 

inflammation, which play a role in NAFLD, used semi-quantitative methods that are subjective 

and they lacked experienced pathologists to validate (18). 

 

2.4.3 Fibrosis 

This section discusses the evolution of methods for evaluating fibrosis. There have been 

various studies involving the detection of fibrosis in liver biopsies, however, the studies either lack 

the validation from the expert pathologists or do not detect all the different types of fibrosis. Let 

us discuss a few of the methods already proposed in the literature. 

  Masseroli et al. discuss FibroQuant as a robust, reproducible and rapid method for precisely 

quantifying the degree of hepatic fibrosis as opposed to semi-quantitative methods (22). These 

semi-quantitative methods do not describe the localization and the pattern of hepatic lesions. Their 

scoring methodology is inefficient for precise quantifications and is not sufficiently sensitive to 

detect small changes in fibrosis. Thus, computerized digital image analysis for precise 

quantification of liver fibrosis was proposed which does better than semi-quantitative methods. It 

also correlates well with calorimetric method, which quantifies total collagen in a tissue section. 

The method enables separate quantification on a single liver histologic image of perisinusoidal, 

perivenular, and portal-periportal and septal fibrosis, and portal-periportal and septal morphology. 

This automatic segmentation of fibrosis areas produced different intra- and interoperate results, 

which is an important step in the prognosis of hepatic diseases. However, the disadvantage of this 

method is the lack of an experienced pathologist to validate the results which therefore, undermines 

the efficiency and validity of the method. 

As semi-quantitative methods proved to be inefficient because evaluation of fibrosis is 

subjectively dependent on the visual interpretation by the observer who is not an experienced 

pathologist, a recent study by Dahab et al. uses quantification of fibrosis by computer software  

using image processing techniques (23). This method answers a few of the pitfalls of semi-
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quantitative methods by looking at the stained biopsies. The software handles images acquired 

from stained connective tissues of liver and converts it into a binary image, applying shading 

correction and automatic thresholding, thus extracting the fibrosis area from digitized black and 

white image. Further, a polygon around the fibrosis area and lumen areas is drawn manually and 

a set of Boolean operations are performed allowing the calculation of the total area of the region 

of interest. Such a method results in many errors because processes like thresholding and 

converting color images into grayscale discard image information that could be useful in assessing 

the contours of the image more accurately. Extracting perisinusoidal or multifocal fibrosis by this 

method is impossible adding calculative errors to the method. Finally, considering only sections 

of the image would add bias because comparison between tissue patterns must be performed in a 

global fashion.  This method also lacks an experienced pathologist to validate, and does not address 

other regions of fibrosis and does not classify each type of fibrosis. 

The next method by Dioguardi et al. claims to be highly objective so far compared to several 

qualitative, semi-quantitative and digitized image processing methods by using completely 

automated methods (24). The principle of this method is the theory of measurement of all clustered 

and non-clustered inflammatory cells. By using specific formulas mentioned in the paper, the 

authors offer a geometrically described morphometry of the histological picture for a liver biopsy. 

The paper only discusses if the fibrosis is normal or not normal based on calculating different 

hematological indices which are either dispersed or clustered but are do not individually classify 

each type of fibrosis based on collagen content and several other morphological characteristics 

(24). 
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3. METHODOLOGY 

This thesis is an extension and improvement of Vanderbeck et al. (7-9) and Morusu et al.’s 

study (5, 6) to build models using supervised machine learning techniques for detection of different 

histological features which in turn aid in the diagnosis of NAFLD. This study addresses the 

identification of various histological features like macrosteatosis and microsteatosis, portal 

inflammation and lobular inflammation, and also detecting different types of fibrosis including, 

normal fibrosis, pericellular fibrosis, portal fibrosis, periportal fibrosis, bridging fibrosis, and 

nodules. 

For this study, liver biopsies are taken from human or mice liver, scanned and digitized to 

which low-level image processing techniques followed by machine learning techniques are applied. 

These liver biopsies are assigned semi-quantitative grades by expert pathologists. The expert 

pathologists are provided with a web-based annotation tool, which enables them to annotate 

different histological features in a liver biopsy providing class labels which are then used for 

building supervised machine learning models. Image processing is performed on the liver biopsy 

slide images to extract image features. Firstly, background/foreground extraction is used to 

identify the tissue area in the image. 

One sub-component of the system is developed to identify and quantify steatosis in the liver 

biopsy. Once the tissue area is identified, using different segmentation methods, white regions in 

the liver biopsy are detected which are then used for steatosis identification. Based on the 

annotations provided by the pathologists, a supervised machine learning model is built by 

extracting different types of features like morphological features, texture based features and scale-

space representation features to identify different kind of white regions in the slide. The white 

region extraction technique is diagrammatically explained in Figure 3-9. Once the model is built, 

unseen samples of liver biopsies are input to the model which then detects and quantifies the 

amount of microsteatosis and macrosteatosis. The percentage of steatosis calculated is thus 

correlated with the semi-quantitative grades given by the experts. 

A second sub-component is developed to detect inflammation in the biopsy images. The first 

step in inflammation detection is the detection of the dark regions in an image. This involves 

similar methods defined to detect the tissue area and the nuclei in steatosis extraction, and then 

extraction of different kinds of features to detect dark regions in the liver biopsy. Once the dark 
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regions in a liver slide are identified, the percentage of lobular and portal inflammation in a tissue 

is quantified and is thus correlated with the semi-quantitative grades provided by the expert 

pathologists. 

 

Figure 3-1 : The flow diagram presenting the overall approach. 

 

The third sub-component is the detection and classification of various types of fibrosis in the 

liver biopsy. The approach to detect different kinds of fibrosis is explained in the Figure 3-14. This 

involves the extraction of blue regions in a TC stained liver biopsy using image segmentation 

techniques. In order to detect the various types of fibrosis, supervised machine learning models 

are built to detect each type separately, involving the extraction of blue regions in an image and 
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performing various feature extraction techniques on the regions annotated by experts, which help 

uniquely identify the type of fibrosis content.   

 Types of Biopsy Data Used 

  In this study, there are two sources of liver biopsy data used, namely, mice liver and human 

liver biopsies.  The use of mice liver biopsies can be useful under certain situations and can be 

more easily obtained.  Moreover, the protein coding regions of mice and human genomes are 85% 

identical on an average (some genes are 99% identical, while others are 60% identical) (25). 

 

a) Mice Liver Biopsies 

  This experimental study chooses mice liver biopsies from the available set of 40 

liver biopsies. These set of biopsies are affected with different levels of NAFLD and its 

histological features, ranging from level 0 to level 3 (level 0 through level 4 in case of 

fibrosis). From the existing dataset, there are 9 liver biopsies which are not infected with 

NAFLD. Figure 3-3 shows a bar graph representation of the current set of liver biopsies 

and amount of affected samples with respect to each histological feature. As there is more 

variety for steatosis affected samples in comparison to the others, we use a subset of those 

affected liver biopsies for this study. The dataset used for this study consisted of digital 

images of 27 H&E stained slides of murine liver biopsies [9 with normal liver histology 

(no macrosteatosis: grade 0), 10 mild (macrosteatosis grade 1), 4 moderate (macrosteatosis 

grade 2), and 4 severe fatty liver (macrosteatosis grade 3)]. These mice were previously 

used in various experimental models to induce fatty liver. Figure 3-2 shows representative 

H&E stained sub-slides of each grade type. 
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Figure 3-2 : Representative Hematoxylin and Eosin images of different models used to induce fatty 

liver. A. Normal liver in wild type mouse fed chow diet. B. Mild fatty liver in wild type mouse fed 

high fat diet. C. Moderate fatty liver in GFP-LC3 mouse fed alcohol. D. Severe fatty liver in GFP-

LC3 mouse fed high-fat high-carbohydrate diet. 

 

All animal experimental protocols were approved by the Institutional Animal Care 

and Use Committee of Indiana University (IACUC). Animals were housed under approved 

conditions with 12 hour light dark cycle. C57BL/6 wild type and GFP-LC3(26) were bred 

in house. At 10 weeks of age, mice were placed on normal chow diet to produce normal 

liver, high fat diet (diet D12492, Research diets) to produce mild fatty liver or high-fat 

high-carbohydrate (HFHCD) diet, or chronic alcohol (29-36%) to produce moderate to 

severe fatty liver. For HFHCD diet, mice were given high fat diet along with the drinking 

water enriched with high-fructose corn syrup equivalent to a total of 42 g/L of 

carbohydrates. Drinking solution was made by mixing in drinking water at a ratio of 55% 

fructose (Acros Organics, Morris Plains, NJ) and 45% sucrose (Sigma- Aldrich, St. Louis, 

MO) by weight. Animals were provided ad libitum access to these diets for 10-24 weeks. 

Only liver biopsy slides from prior concluded studies were utilized for this study. Mice 

were first given Avertin (250 mg/kg, i.p.) for anesthesia, followed by cervical dislocation 

for euthanization. This procedure minimizes any suffering. All procedures are approved by 

the IACUC of Indiana University. 
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Liver biopsy H&E stained slides were studied and scored by the pathologist Dr. C 

according to NASH Clinical Research Network scoring system where steatosis grade range 

between 0-3 ( 0 < 5% steatosis , 1 = 5% - 33%, 2 = 33% - 66%, and 3 > 66% ) (27). 

  

 

Figure 3-3 : Pictorial representation of number of mice liver biopsies graded by Dr. C. 

 

b) Human Liver Biopsies 

  This experimental study chooses from 66 human liver biopsies. Both the 

pathologists mentioned below in Section 3.3, namely Dr. K and Dr. C, provided semi-

quantitative grades for the human liver biopsies. Dr. K graded 64 of the available 66 liver 

biopsies, however, Dr. C graded all the present human liver biopsies. Figure 3-5 and Figure 

3-6 show the bar graph representation of different patients affected with each histological 

feature of NAFLD based on the both the experts’ semi-quantitative grades. For this study, 

the H&E stained liver biopsies are used for detection of lobular and portal inflammation 

and correlated with the pathologist grades, and the TC stained liver biopsies are used for 

the detection of different types of fibrosis. There are 11 slides which are not affected by 

NAFLD. These human liver slides were previously used for experimental study as well. 
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Figure 3-4 : Pictorial representation of number of human liver biopsies graded by Dr. K. 

 

 

Figure 3-5 : Pictorial representation of number of human liver biopsies graded by Dr. C. 

 Image Data  

To obtain the digitized images, the biopsy slides are scanned at 20X using Aperio Scan 

Scope CS system. The scanned images are stored in SVS file format. These are based on the TIFF 

format of images at multiple resolutions and utilizes the tile image capabilities. They use 

compression type 33005 (which is a specific kind of JPEG 2000 compression for RGB format). 

Each SVS file received contains different types of images. The first one is termed as the 

“baseline version of the image” i.e. contains the full resolution version of the image. The second 

image is generally a thumbnail version, typically having dimensions of about 1024 × 768 pixels 
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which is always stripped. All the remaining versions of the image are pyramid images (each having 

lower resolution than the previous by a factor of 2 in each dimension), which are compressed with 

the same type of compression as that of the baseline image, organized as tiles with same tile size. 

The last two version of the image however, is a slide label image which contains lower resolution 

of either the slide label or the slide itself. Our research involves extraction of the highest resolution 

image (in JPEG format) and using a 50% reduced version of it, which enables us to speed up our 

image processing activities.  

 Pathologist Grades and Annotations 

  This study involves getting expert pathologists to grade the biopsy slide based on the 

NASH scoring system and also annotate different histological features in liver biopsy images. In 

this study, two pathologists provided the annotations and semi-quantitative grades for the liver 

biopsy slides. The different biopsy images include both a TC Stained and H&E Stained variants, 

such that the former is used for labeling and grading fibrosis content while the latter is used for 

labeling and grading steatosis, inflammation and ballooning content. The pathologists are Dr 

David E. Kleiner and Dr Oscar W. Cummings. Dr. David E. Kleiner, M.D., Ph.D. currently heads 

the Histopathology and Autopsy Pathology department at the Center of Cancer Research at 

National Cancer Institute in National Institute of Health (NIH) located at Bethesda, Maryland, 

United States (referred as Dr. K in this study). Dr. Oscar W. Cummings, M.D. is a Professor of 

Pathology and Laboratory Medicine and the Director of Surgical Pathology at Indiana University 

School of Medicine located at Indianapolis, Indiana, United States (referred as Dr. C in this study). 

All experiments conducted in this study to build different decision support systems to detect 

various histological features in a liver biopsy use both the above mentioned pathologists’ 

annotations for building machine learning models and their semi-quantitative grades for 

correlation. 

3.3.1 Annotation Tool 

One of the most important steps in this research involves gathering data from the expert 

pathologists. A web annotation tool had been built to annotate slide images and store the 

annotations (11). This tool is built using HTML5 and javascript open source technologies like 

Open Layers (currently under BSD License), which provides application programming interfaces 
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(APIs) to build rich web-based applications and Bootstrap (v3) which enhances the look and feel 

of the tool by providing responsive HTML and CSS enhancements.  

Vanderbeck et al in his study (7-9) had developed a web application for getting annotations 

from the experts. However, only small scaled images could be used to accomplish the same. 

Because of the size of our high resolution liver biopsy slides, that application could not be used. 

The markers associated with the tool were not user friendly and very large images take a lot of 

time to load. Later, Morusu et al. in her study (5, 6) developed a web application tool which 

addresses some of the above mentioned issues. In her study, she used the Open Layers API to load 

very large images at a quicker pace, such that images are divided into different set of tiles, and 

only the required set of tiles were loaded during annotation. However, the tool lacked some 

functionality in the labeling of TC Stained samples with different levels of fibrosis and the usability 

of the tool was not possible in different resolution monitors and browsers. Apart from this, the 

above mentioned tool had different setups for mice liver biopsies and human liver biopsies. To 

overcome all the above mentioned challenges, a responsive user interface (using Bootstrap library) 

has been added so that different type of screen resolutions do not hinder the usage of the tool. 

Along with the list of annotation labels mentioned by Morusu et al., new labels have been added 

for TC stained images to identify many more histological features which help uniquely identify 

the respective types. Figure 3-6 and Figure 3-7 give an overview of the newly built annotation tool.  

 In adherence to Morusu et al.’s idea (5, 6) of annotating slides two ways, the newly built 

annotation tool thus provides, point annotations as well as polygon annotations. Additionally, there 

is a newly added subset of polygon annotations, termed as square annotations which are used to 

identify the different types of fibrosis. This eases the work for the pathologist to draw a regular 

polygon, instead provides with an in-built square with a feature to expand the same. Flat files 

(unique by the combination of the image name and pathologist username), are used to save the 

annotations at the back end. 

 There are point annotations which are used to annotate relatively distinct areas of the image 

i.e. regions which have a specific shape, and structure. Therefore, the coordinates of the point are 

stored along with the anatomical/histological structure it defines is written in a file at the back end. 

 There are polygon annotations which are also known as boundary annotations, that enable 

the pathologist to annotate structures which have irregular shapes, but are convex in nature. Each 

click creates an edge in the polygon as we go along annotating it, a double click indicates that the 
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region is identified. Hence, the coordinates along each edge are recorded apart from the number 

of edges and the anatomical/histological structure it defines in a file at the back (server) end. 

 There are special type of polygon annotations introduced termed as square annotations, 

which allows the user to annotate areas in an expandable square format. This type of annotation 

has been introduced to ease the adding of an annotation. Thus, the coordinates along each edge are 

recorded with a fixed number of edges (=4) and the anatomical/histological structure it defines at 

the back end.  

Annotation 

Name 

Annotation 

Type 
Description 

Annotation 

Color 

Macro Fat Point 
Distinct globular white regions, 

generally in circular structure. 
Magenta 

Micro Fat Polygon 
Soapy textured white regions, 

spread across the biopsy area. 
Dark Blue 

Normal 

Fibrosis 

Square 

Polygon 

Blue regions around the 

inflammation area. 

Yellow 

(Fill) 

Pericellular 

Fibrosis 

Square 

Polygon 

Coarse chicken wired blue region 

structures around the cell areas.  
Red (Fill) 

Portal 

Fibrosis 

Square 

Polygon 

Blue regions around the portal vein 

areas. 
Aqua (Fill) 

Periportal 

Fibrosis 

Square 

Polygon 

Extension of blue regions around 

portal fibrosis. 
Purple (Fill) 

Bridging 

Fibrosis 

Square 

Polygon 

Continuous flow of blue regions 

spread across bile duct and any vein. 
Lime (Fill) 

Nodules 
Square 

Polygon 

Elliptical structures of comprising 

of blue region borders. 
Teal (Fill) 

Hepatocyte 

Ballooning 
Polygon 

Dark region areas across which 

appears with wispy cytoplasm. 
Magenta 

Lobular 

Inflammation 
Polygon 

Dark region areas which show 

inflammatory nuclei. 
Teal 

Portal 

Inflammation 
Polygon 

Dark region areas showing 

inflammatory nuclei in portal 

regions. 

Lime 

 

 As discussed by Morusu et al.(5, 6) in her study, the Table 3-1 presents a list of the current 

supported histological/anatomical structures in a liver biopsy. Each of the structures have a type 

of color associated with them in the annotation tool in order to differentiate them from one another. 

Table 3-1 : The different types of annotations present in the web annotation tool. 
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There are two figures – Figure 3-6 and Figure 3-7 that demonstrate point and boundary annotation 

examples in a mice liver biopsy and some square annotations in a human liver biopsy, respectively. 

 

Figure 3-6 : A Preview of the mice liver labeling tool with point and boundary annotations labeled 

at 6x magnification. 

 

 

Figure 3-7 : A Preview of the human liver labeling tool with square annotations (fibrosis 

annotations) labeled at 6x magnification. 

a. NAFLD Lesions:  The set of annotations in Tables 3-2 and 3-3 constitute the histological 

features in the liver biopsy which are essential to determine if a person is affected with 

NAFLD. Fibrosis and its types are present only in TC stained liver biopsies. 
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Tables 3-2 and 3-3 show the number of annotations provided by the expert pathologist(s) 

(Dr. C) in mice liver and (Dr. C and Dr. K) in human liver biopsies.  

 

Table 3-2 : The number of NAFLD lesion annotations present for mice liver biopsies. 

Annotation 

Name 

Annotations – Dr. C 

Macro Fat 22696 

Micro Fat 568 

Hepatocyte 

Ballooning 

0 

Lobular 

Inflammation 

40 

Portal 

Inflammation 

28 

 

Table 3-3 : The number of lesion annotations present for human liver biopsies. 

Annotation 

Name 
Annotations – Dr. C Annotations – Dr. K 

Total 

Annotations 

Macro Fat 952 359 1311 

Micro Fat 0 12 12 

Normal 

Fibrosis 
0 186 186 

Pericellular 

Fibrosis 
126 128 254 

Portal 

Fibrosis 
2 118 120 

Periportal 

Fibrosis 
46 127 173 

Bridging 

Fibrosis 
41 98 139 

Nodules 54 61 115 

Hepatocyte 

Ballooning 
11 92 103 

Lobular 

Inflammation 
260 347 607 

Portal 

Inflammation 
163 340 503 

 

b. Anatomical Structures in liver biopsy: The set of annotations in Table 3-4 constitute the 

different anatomical structures present in a liver biopsy. 
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Annotation 

Name 

Annotation 

Type 
Description 

Annotation 

Color 

Bile Duct Polygon 
Ring - like white region structures, 

generally with nuclei. 
Orange 

Central Vein Polygon 
White region structure around the 

center of a lobular area. 
Green 

Portal Artery Polygon 
White regions showcasing a thick 

arterial wall. 
Aqua 

Portal Vein Polygon 

White regions in general. A blood 

vessel which carries blood from 

different areas around to the liver.  

Blue ring 

(with red 

fill) 

Sinusoid Point 

White region generally, blood vessel 

between hepatic artery and portal 

vein 

Yellow 

 

Table 3-5 shows the number of annotations provided by the expert pathologist (Dr. C) in 

mice liver. Table 3-6 shows the number of annotations provided by both pathologists (Dr. 

C and Dr. K) in human liver biopsies.  

 

Table 3-5 : The number of annotations present for mice liver biopsies. 

Annotation 

Name 
Annotations – Dr. C 

Bile Duct 121 

Central Vein 117 

Portal Artery 22 

Portal Vein 75 

Sinusoid 39 

 

 

 

 

Table 3-4 : The different anatomical structures present in a liver biopsy. 
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Table 3-6 : The number of annotations present for human liver biopsies. 

Annotation 

Name 

Annotations – Dr. 

C 

Annotations – Dr. K Total Annotations 

Bile Duct 43 115 158 

Central Vein 13 50 63 

Portal Artery 32 72 104 

Portal Vein 37 80 117 

Sinusoid 314 173 487 

 

c. Control Tissues: The tissue areas which serve as normal regions or areas where the disease 

is not present (Table 3-7). 

Annotation 

Name 

Annotation 

Type 
Description 

Annotation 

Color 

Normal 

Hepatocyte 
Polygon 

Liver cells – occupy 80% of the 

liver in general. 
Red 

Normal 

Parenchyma 
Polygon 

Group of liver cells which perform 

a particular activity. 

Aqua ring 

(with orange 

fill) 

 

Tables 3-8 and 3-9 show the number of annotations provided by the expert pathologist(s) 

(Dr. C) in mice liver and (Dr. C and Dr. K) in human liver biopsies. 

 

Table 3-8 : The number of annotations present for mice liver biopsies.  

Annotation 

Name 

Annotations – Dr. C 

Normal 

Hepatocyte 

10 

Normal 

Parenchyma 

6 

 

 

 

Table 3-7 : The different types of control tissues. 



www.manaraa.com

27 

 

Table 3-9 : The number of annotations present for human liver biopsies.  

Annotation 

Name 

Annotations – Dr. C Annotations – Dr. K Total 

Annotations 

Normal 

Hepatocyte 

1 52 53 

Normal 

Parenchyma 

0 11 11 

 

d. Others:  These are the areas which are incorporated due to the process involving in taking 

a liver biopsy and preparing the slides (Table 3-10). These account for negative classes in 

our study.  

 

 

Annotation 

Name 

Annotation 

Type 
Description 

Annotation 

Color 

Tissue 

Preparation 

Tear 

Point 
Tissue tear during tissue 

preparation. Generally white region. 
Orange 

Tissue 

Preparation 

Stretch 

Point 
Tissue stretch during tissue 

preparation. Generally white region. 
Dark Blue 

Slide 

Background 
Point The non-tissue area in the slide. Lime 

Tissue Fold Point 
Tissue fold during tissue 

preparation. 
Green 

Squame Point Structure damage in tissue. Aqua 

Other Point 
Any other structure apart from the 

above mentioned ones. 
Red 

 

Tables 3-11, 3-12, and 3-13 show the number of annotations provided by the expert 

pathologist(s) (Dr. C) in mice liver and (Dr. C and Dr. K) in human liver biopsies. 

 

 

 

 

 

 

Table 3-10 : A few histological areas incorporated while taking a liver biopsy. 
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Table 3-11 : The number of annotations present for mice liver biopsies. 

Annotation 

Name 

Annotations – Dr. C 

Tissue 

Preparation 

Tear 

22 

Tissue 

Preparation 

Stretch 

11 

Slide 

Background 

0 

Tissue Fold 47 

Squame 39 

Other 5 

 

Table 3-12 : The number of annotations present for human liver biopsies. 

Annotation 

Name 

Annotations – Dr. C Annotations – Dr. K Total 

Annotations 

Tissue 

Preparation 

Tear 

49 102 151 

Tissue 

Preparation 

Stretch 

0 0 0 

Slide 

Background 

0 59 59 

Tissue Fold 12 25 37 

Squame 0 1 1 

Other 6 15 21 
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Table 3-13 : Cumulative number of annotations available on mice and human. 

Type of 

Structure 
Mice Human 

Total 

Annotations 

NAFLD 

Lesions 
2932 3523 6455 

Anatomical 

Structures  
16 64 80 

Control 

Tissues 
374 929 1303 

Other 124 269 393 

 Steatosis Classification 

The detection of steatosis can be of two types, namely, macrosteatosis (also known as macro fat) 

and microsteatosis (also known as micro fat).  

3.4.1 Macro Fat Detection 

  A supervised machine learning model is trained using various regions which have a white 

center: macrovesicular steatosis, microvesicular steatosis, bile duct, portal artery, portal vein, and 

central vein. 

 

Figure 3-8 : White regions in mouse liver biopsy.  

Once the model identifies macrosteatosis regions among the other white regions, the percentage 

of macrosteatosis is calculated based on the area of tissue identified as fat. This value is then 

correlated with the semi-quantitative grade provided by the pathologist. 
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The processing steps in the identification and quantification of macrosteatosis are shown below. 

More detailed explanation of each step is given as follows. 

 

a) Identifying the tissue region: A region growing algorithm is applied on the green channel 

of the 50% reduced RGB image to separate the tissue and background regions.  

b) Identifying the white regions: The intensity image obtained from the green channel is 

filtered using a 3x3 averaging mask in order to smooth out noise. The intensity values in the image 

are then adjusted with a GAMMA correction value of 6 to make the image darker. K-means 

clustering is applied to the darkened image with a k value of 2 (i.e., 2-clusters are identified). Pixels 

in the image are now divided into two classes, white and black. Any white region bigger than 60 

pixels is eliminated and the remaining white regions are used as starting points for further analysis.  

d) Obtaining the feature vector for each white region: For each of the white regions 

obtained using the previous step, image features are computed to be used in learning the model. 

The details of the types of attributes extracted are further explained below in the Section on Feature 

vector representation. 

e) Annotations:  The computed feature vectors of regions annotated by the pathologist are 

used as training patterns for learning the model. There are two types of annotations provided by 

the pathologist: points and polygonal regions. For point annotations, the individual white region 

on which the point is marked is considered. For polygonal annotations all the white regions falling 

within the given polygonal boundary annotation are considered and processed. Figure 3-10 shows 

a graphic with white and dark regions, point and polygon annotations. The white regions within a 

polygon pointed to by arrows in the Figure 3-10 are used for feature extraction for the label 

represented by the polygon. Similarly, the white region pointed to by point annotation is used for 

extracting attributes for the given label.  

f) Learning the model:  Support vector machine (SVM) with a linear kernel is the machine 

learning technique used for learning the model for macrosteatosis identification from the expert 

pathologist’s annotations of several regions.  

g) Macrosteatosis Identification: Once the trained classifier model is ready, new (i.e., 

previously unseen) images are processed using the trained classifier: feature vectors are computed 

for all white regions and are used to classify each of the white regions, resulting in the identification 

of macrosteatosis. 
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Figure 3-9 : Overall flow diagram of the approach to automated macrosteatosis identification and 

quantification. 

 

 

Figure 3-10 : Graphic showing dark and white regions with point and polygon annotations. The 

white region labeled using point annotation (represented using 'X') is used for extracting attributes. 

A polygon annotation is shown using black polygon. The white regions falling within the polygon 

are indicated by arrows and these are the regions used for attribute extraction for the given label. 

3.4.2 Micro Fat Detection 

  As shown in Figure 3-8, microsteatosis could display different histological appearances on 

H&E stained liver biopsies, from very tiny cytoplasmic vesicles, to small cytoplasmic vesicles that 

do not displace the hepatocyte nucleus, to a foamy appearance of the cytoplasm. A supervised 

machine learning model is trained using various regions: microvesicular fat, macrovesicular fat, 
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bile duct, portal artery, portal vein, central vein and sinusoid. This trained model is then used to 

identify the microsteatosis regions in the image among the other identified regions.  

The processing steps in the identification of microsteatosis are shown in Fig 3-11. More 

detailed explanation of each step is given below. 

a) Obtaining the image: The digital image from the Aperio Scan Scope CS system is stored 

in Aperio svs format. The resolution picked from svs format file is the 50% reduced one. 

b) Identifying the tissue region: A region growing algorithm is applied on the green channel 

of the 50% reduced RGB image to separate the tissue and background regions.  

c) Obtaining feature vector for region (pixel wise): For each of the images generated after 

isolating the tissue area as described in step (b), Gabor filter based texture features are computed. 

The details of the feature extraction are further explained below in Section 3.4.3 on Feature vector 

representation. 

d) Annotations:  The computed feature vectors of regions annotated by the pathologist are 

used as training patterns for learning the model. In the web-based annotation tool, the 

microsteatosis regions are denoted by the pathologist by drawing a polygon around the regions. 

The pixels falling within these annotated polygons are labeled as microsteatosis and the computed 

features for these pixels are used for training the model. Because the number of such pixels is too 

large, in order to reduce the computation time for the training phase, we randomly subsampled 

0.02% of the pixels annotated as microsteatosis and 0.001% of the pixels annotated as any other 

histological feature. 

e) Learning the model:  SVM with a linear kernel is the machine learning technique used 

for learning the model for microsteatosis identification from the expert pathologist’s annotations 

of several regions.  

f) Microsteatosis identification: Once the trained classifier model is ready, new (i.e., 

previously unseen) images are processed using the trained classifier: feature vectors based on 

Gabor texture features are computed for all regions which are then used to classify them as 

microsteatosis or non-microsteatosis regions. 

 



www.manaraa.com

33 

 

 

Figure 3-11 : Overall flow diagram of the approach to automated microsteatosis identification. 

 

3.4.3 Feature Vector representation 

  In prior studies presented by Vanderbeck et al. (7-9) and Morusu et al. (5, 6, 11), we used 

image texture statistics at various scales (σ = 0,1,2,4,8) as feature vectors to be used as input to the 

classifier. In this study, we have extended this feature set to improve the accuracy of identification. 

“We added a new set of textural features using Gabor filters (28, 29) in detected white regions or 

in annotated macrosteatosis regions. For each of the white regions, the surrounding area of 20 

pixels in all directions is considered for extracting these attributes. Also, a rectangular region of 

25 pixels around the white region is considered for feature extraction.  

Gabor filters, which are band pass filters at various frequencies and orientations, are used 

in this study for texture analysis. The impulse response of a Gabor filter is the product of a 

sinusoidal plane wave at a given frequency (𝑓 = 1
𝜆⁄ ) and orientation (𝜃) with a Gaussian function 

at a given scale (𝜎). 

The equation of Gabor function in spatial domain is given below (30-33): 

𝑔(𝑥, 𝑦; 𝜆, 𝜃, 𝜓, 𝜎) = exp (−
𝑥′2 + 𝑦′2

2𝜎2
) exp (𝑖 (2𝜋

𝑥′

𝜆
+ 𝜓)) 

where 𝑥′ = 𝑥 cos 𝜃 + 𝑦 sin 𝜃  and 𝑦′ = −𝑥 sin 𝜃 + 𝑦 cos 𝜃,  are the rotated coordinates to account 

for the filter orientation, 𝜆 = 1 𝑓⁄  is the period of the sine wave, 𝜃 is the orientation of the Gabor 
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filter, 𝜎 is the width of the  Gaussian envelope, 𝜓 is the phase offset of the sine wave, and 𝑖 =

√−1. Thus, the function 𝑔(𝑥, 𝑦; 𝜆, 𝜃, 𝜓, 𝜎) defines the convolution kernel. Filtering is performed 

in the frequency domain using fast Fourier transforms as it is computationally faster. 

In the macrosteatosis identification, we have used four orientations ( 𝜃 =

0°, 45°, 90°, and 135°) for the Gabor filters and for each orientation five radial frequencies which 

are one octave apart, for a total of 20 Gabor filters (4 orientations × 5 frequencies) (34). These 

filters are applied to 7 images (3 for RGB channels separately, 3 for HSV channels separately and 

one for the gray level image) resulting in a total of 140 Gabor filter features.” (5, 6) 

These, combined with the features from our prior study (35), results in a total of 554 

features which have been used in training the classifier.  

In the microsteatosis identification, we have used four orientations ( 𝜃 =

0°, 45°, 90°, and 135°) for the Gabor Filters and for each orientation ten radial frequencies which 

are one octave apart, for a total of 40 Gabor filters (4 orientation × 10 frequencies)  (34). These 

filters are applied to a single image (gray scale), resulting in 40 Gabor filter features for each pixel. 

3.4.4 External Validation of Classifier’s Accuracy 

To verify the accuracy of the classifiers identifications of lesions as macro- or 

microsteatosis, liver biopsy images previously unseen by the classifiers that have not been used in 

the training of the classifier were used in this step.  

For macrosteatosis validation, fifty randomly identified macrosteatosis lesions were 

selected and classified using the automated algorithm. These classification results were examined 

by the study pathologist to determine the validity of the identification.  

For microsteatosis validation, one hundred and ten random sub slides from a pool of 

eleven previously unseen slides were examined by the study pathologist to determine the validity 

of the identification. We used a larger number of microsteatosis identified lesions for validation in 

order to properly represent the slides based on the significantly smaller size of these lesions 

compared to macrosteatosis lesions. The study pathologist assessed each identified (microsteatosis 

or not microsteatosis) lesion by the classifier as correct or incorrect. Accuracy was calculated as 

percent correctly identified with macro- or microsteatosis by the classifier as determined by the 

gold standard, the study expert pathologist. 



www.manaraa.com

35 

 

3.4.5 Quantification of Macro Fat 

After macrosteatosis regions are identified by the trained classifier, the percent area of 

macrosteatosis in a biopsy image was quantified. Pathologists provide semi-quantitative 

macrosteatosis grade based on their perception of percentage macrosteatosis area. And hence, in 

this study, the ratio of measured macrosteatosis area to the total tissue area is calculated as a 

continuous measure of macrosteatosis quantification so that it can be compared with pathologist’s 

semi-quantitative grades. For each of the white regions, the area is already calculated as part of 

computing the morphological features. The sum of areas of all white regions identified by the 

classifier is the macrosteatosis area. The tissue area is computed by using the background mask 

extracted in the white region identification process. The image area in the regions where mask is 

not present is considered as tissue and the space occupied by this region in pixels is the tissue area. 

 Inflammation Classification 

The identification of inflammation areas include the detection and quantification of each of 

the lobular and portal inflammation. This section describes the process of doing the same. 

3.5.1 Lobular and Portal Inflammation Detection 

  This research is an extension of the study done by Morusu et al. to detect inflammation in 

human liver biopsies (5, 6). As addressed in the above study, this involves detection of the different 

dark regions associated to a liver biopsy sample. The various histological features that are 

generally referred to as dark regions include, lobular inflammation, portal inflammation, normal 

hepatocyte and bile duct. 
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Figure 3-12 : The different dark regions present in a liver biopsy slide. 

 

  The Figure 3-12 shows the each of the different dark regions taken for this study. Here, we 

try to improve the existing models built for lobular and portal inflammation detection by reducing 

the classes that are not affected much, such as micro fat, tissue folds, normal parenchyma and 

hepatocyte ballooning. The same processing techniques (explained by Morusu et al. (5, 6)) are 

applied and a supervised machine learning model is created with the above four mentioned 

features.  
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3.5.2 External Validation of Classifier’s accuracy 

In order to verify the accuracy of detection of the built machine learning classifier for both 

lobular and portal inflammation, unseen liver biopsy samples which have not been used as part of 

the training set to build the classifier have been used.  

 To detect the lobular inflammation, there are 113 sub slides selected in random from a set 

of 16 liver biopsy slides which are processed and evaluated by the classifier to detect the presence 

of lobular inflammation. The results from the classifier are then examined by the expert 

pathologists to determine the correctness of the classifier built. 

 For the portal inflammation detection, there are 110 sub slides selected in random from a 

set of 16 liver biopsy slides which are then processed by the built classifier to detect the portal 

inflammation areas. These areas are then evaluated by the expert pathologists to determine the 

accuracy of the classifier. The accuracy of the classifier is computed based on the ratio of number 

of correctly classified instances by the total number of instances processed by the classifier as 

determined to the pathologists’ “gold standard”.  

3.5.3 Quantification of Inflammation 

  Once the inflammation regions are identified by the classifier built, the percentages of both 

lobular and portal inflammation areas in a biopsy image are quantified. The expert pathologists 

provide semi-quantitative grades based on their perception of the infected portal and lobular 

inflammation areas. Therefore, in this research, the ratio of measured portal and lobular 

inflammation area to that of the tissue is computed and thereby compared to the expert 

pathologists’ grades. For each of the dark region computed, the area is computed based on the 

morphological features calculated. The tissue mask area is the actual area in the slide with the 

tissue present (computed in the step 2 of the process). 

 Fibrosis Classification 

In our study, we look to build a new classifier which detects if fibrosis is present in a liver 

biopsy. Apart from this, we also build different classifiers to identify the various types of fibrosis 

which include, normal fibrosis, pericellular fibrosis, portal fibrosis, periportal fibrosis, bridging 

fibrosis and cirrhosis by analyzing the various blue regions in the image, also known as collagen. 
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Fibrosis is the blue region area present in a TC Stained liver biopsy. Based on their 

morphological structures, textural properties and their surrounding neighborhood, they are 

identified as different types of fibrosis. While building the model, all labels which have blue 

regions associated with the annotated slide are fed to the classifier. During the model’s training 

phase, the annotated area’s neighborhood is also analyzed, apart from present annotated region. 

As the classifier gets built, unseen samples are passed to the model which in-turn detect the kind 

of fibrosis present. The amount of blue region (collagen) is correlated with the pathologist grades 

as well. The severity of fibrosis is detected based on the following table. Based on the number of 

nodule regions and the bridging regions, followed by the percentage(s) of other types of fibrosis 

like, portal fibrosis, periportal fibrosis, pericellular fibrosis and normal fibrosis, we correlate them 

with the semi-quantitative grade provided by the pathologists. 

Different types of fibrosis classes are listed below along with their diagrammatic 

representation. 

1. Normal Fibrosis: The blue regions around the inflammatory nuclei (dark regions which 

are diffusely scattered). Figure 3-13A shows an example of Normal Fibrosis. 

2. Pericellular Fibrosis: The chicken wire shaped blue regions which are very thin around 

the cell. These extend along sinusoids to surround one or a group of hepatocytes. Figure 3-

13B shows an example of Pericellular Fibrosis. 

3. Portal Fibrosis: The blue regions present around the portal triad region are termed Portal 

Fibrosis, which consequently become densely stained and expanded around those regions, 

however, there is no extensions to its adjacent parenchyma. Figure 3-13C shows an 

example of Portal Fibrosis. 

4. Periportal Fibrosis: The blue regions present around the periportal triad region are termed 

as Periportal Fibrosis, there can be extensions to its neighboring parenchyma. Figure 3-

13D shows an example of Periportal Fibrosis. 

5. Bridging Fibrosis: The connective blue strands present across the tissue connecting 

various portal tracts and central veins. They are continuous in nature. Figure 3-13E shows 

an example of Bridging Fibrosis.  

6. Cirrhosis (Nodule):  The blue region strands which when connected, form a regular 

elliptical structure is termed as Nodule or Cirrhosis. This type of fibrosis is widely 
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distributed therefore, the resultant morphological structure appearance encompass a wide 

spectrum. Figure 3-13F shows an example of Nodule. 

 

 

Figure 3-13 : Different types of fibrosis annotated. A. Normal Fibrosis B. Pericellular Fibrosis C. 

Portal Fibrosis D. Periportal Fibrosis E. Bridging Fibrosis F. Nodule. 

 

There are a number of classifiers built during this process. Firstly, there is one classifier 

we build with two classes namely, Normal Fibrosis (represented in Figure 3-14A) and abnormal 

fibrosis. The abnormal fibrosis classes consists of all the remaining types of fibrosis ranging from 

pericellular fibrosis, portal fibrosis, periportal fibrosis, bridging fibrosis, cirrhosis. Apart from this 

classifier, there is another one which contains pericellular fibrosis, portal fibrosis, periportal 

fibrosis and bridging fibrosis. The third classifier built has two classes namely, nodules and others 

where others constitute pericellular fibrosis, portal fibrosis, periportal fibrosis and bridging fibrosis. 
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3.6.1 Blue region Extraction 

The first step involved in identification of different types of fibrosis involves blue region 

extraction from a TC Stained image. The following are the steps involved in extracting the collagen 

in a liver biopsy. Figure 3-14 gives a pictorial representation of the same. 

a. Image Retrieval: The TC Stained image is obtained in Aperio svs format. The image is 

then processed in the 50% scaled version of it. 

b. Identification of Tissue: In order to identify the tissue area, an 8-bit gray scale image is 

created. This distinguishes the tissue area sample from the image background and this is 

done by forming a weighted sum of the R, G and B components using the following 

formula:  𝑔𝑟𝑎𝑦 = 0.2989  𝑅 +  0.5870 𝐺 +  0.1140 𝐵  (36) The gray image is then 

subjected to global thresholding using Otsu’s method (37). This threshold is then applied 

on the image to get a black and white image, such that the tissue area is highlighted in white 

and background is masked out accordingly.  

c. Identification of blue regions: The tissue mask calculated in the previous step is then 

applied on the TC Stained image such that processing can take place only on the required 

tissue area. The newly formed TC Stained image is then subjected thresholding based such 

that the blue channel pixels range from 0.6863 to 0.9411 of a normalized intensity range 

(normalized to the range [0,1]), red and green channel pixels range from 0.2941 to 0.8235, 

respectively in the normalized intensity range. 

d. Building supervised models: There are various features thus computed for unique 

identification of different kinds of fibrosis, a supervised machine learning model is built 

using support vector machines (SVM) and therefore, the model is evaluated using 10-fold 

cross validation. The different blue regions extracted belong to one type of fibrosis, each 

of them are separately built using two classes (type of fibrosis and others), due to the 

variable set of annotations present, sub-sampling is done. 
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Figure 3-14 : The figure shows the pictorial representation of the steps involved in extracting the 

collagen in a liver biopsy. 

 

3.6.2 Attribute vector representation 

For each of the blue regions extracted by using the steps in section 3.6.1 different types of 

features are calculated. The blue regions, and their surrounding area of 20 pixels in all directions 

are also computed. The details of each of the following set of attributes is listed below. 

 Histogram of oriented gradients (HOG): Histograms of Oriented Gradients (HOG) is 

one of the well-known features for object recognition. HOG features are calculated by 

taking orientation histograms of edge intensity in a local region (38). The basic idea of 

these features is that the distribution of local intensity gradient orientations will capture the 

shape properties of the structure. This method is based on evaluating well-normalized local 

histograms of image gradient orientations in a dense grid (39). 

These features are useful, as they capture edge or gradient structure characteristic 

to the local shape in a local region with an easily controllable degree of invariance to local 

geometric and photometric transformations: translations or rotations make a little 

difference if they are much smaller than the local spatial or orientation bin size (39). 
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In this study, HOG feature extraction technique proposed by Dalal et al. is used (39, 

40). Following are the list of parameters specified for computing HOG descriptors such 

that they can be used to extract feature vectors which help in the unique identification of a 

blue point.  

1. Cell Size: This resembles the size of each extracted HOG cell. We have used 8X8 

so that even the smallest-scale detail is not to be missed. 

2. Block Size: This corresponds to the number of cells associated to one block. 

Smaller block sizes enable us to capture the significance of local pixels and so we 

have used a block size of 1X1. 

3. Block Overlap: This parameter is used to set the number of overlapping cells 

between two adjacent blocks. The larger the overlap, the more number of features 

are generated. In our case, as we have a block size of one already set (point based 

extraction), there is no overlap. 

4. Number of orientation histogram bins: For our experiment, we choose 9 bins. 

These HOG descriptors are computed for each of the blue pixels in a 70X70 sub-slides. 

 

 Speeded up robust features (SURF): These features comprise of different phases 

involving feature extraction, feature description and feature matching. One main advantage 

associated with detection of SURF features is that, it is very fast in terms of computational 

time. The focus of these set of features is to get various scale and in-plane rotation invariant 

detectors and descriptors. It strikes the right balance among different feature complexities 

and robustness to the common photometric deformations. An input image is thus analyzed 

to get different point features, followed by analyzing the same at different scales and 

determining interest points which can uniquely identify its surrounding area. These set of 

interest points are then subjected to get a rotation and scale invariant descriptor for itself 

(41). 

  For this study SURF is applied to determine various blob features present in an 

image, which will eventually be used to determine different types of fibrosis, especially 

nodules due to their varying shape and size. Following are the list of parameters that can 

be provided to determine specific features for our use (41). 
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1. Metric Threshold: This is by default set to 1000.0. To determine as many as all 

the blobs present in the image, we can vary up to any extent higher. For this 

experiment, default values have been used as the areas of interest are computed in 

the previous step of blue region extraction itself. 

2. Number of Octaves: If the goal of the experiment is to determine only distinctly 

huge blobs, the number of octaves can be increased. For our experiment, the default 

value of 3 is used. 

3. Number of Scale levels: This determines the number of different scales at which 

the features are to be computed. In our study, four different scales are computed to 

uniquely determine nodules. 

4. Rectangular region of Interest: This is the set of points on which the computation 

is focused. For our experiment, we use the blue region areas (represented as two 

dimensional coordinates) within the annotated region in a liver biopsy. 

 

 Gabor features: In this study, to uniquely identify a blue pixel in a liver biopsy sample 

we compute Gabor features around the blue pixel (25X25 region surrounding it). The 

details of the Gabor feature implementation has already been explained in the section 3.4.3. 

3.6.3 Different types of Fibrosis Detection 

  In order to detect different types of fibrosis in a liver biopsy slide, this study involves 

building different machine learning models which detect normal and abnormal fibrosis. Further, 

in order to detect normal, portal, and periportal fibrosis – there are various morphological features 

that are computed along with texture based features like Gabor features, features computed based 

on derivatives across different scales. There are a total of 527 features computed for identification 

of portal fibrosis, periportal fibrosis and pericellular fibrosis. Apart from these, to detect nodules 

(cirrhosis) and bridging fibrosis in this study, SURF features along different scales and HOG 

features are computed as the uniqueness of a nodule can be determined across different scales. A 

total of 307 features are computed for two different models (one being nodule v/s others and the 

other bridging fibrosis v/s others). 
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3.6.4 Quantification of Collagen 

  Collagen accounts for the blue region present in a liver biopsy slide. Once the blue region 

extraction is done, the amount of blue region is computed. The expert pathologists provide semi-

quantitative grades for each of the validation slides, based on the collagen content and the nature 

of fibrosis present in a liver biopsy. In this study, the expert pathologists’ grades are quantified 

with the amount of collagen content (blue region area computed) basing on the weighted average 

sum of the blue region area to that of the tissue area.  
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4. RESULTS 

  This section involves the different results associated with the detection of steatosis, 

inflammation and fibrosis and its types. In this study, quantification of each of the different 

detected histological features are also studied and correlated by the expert pathologist grades. 

 Validation Metrics 

There are various kinds of metrics that can be used to uniquely validate a supervised machine 

learning classifier. In this study, we use the following different validation metrics. 

 

 Confusion Matrix: 

Confusion matrix is a layout used to describe the performance of a classification 

model. It contains the information about actual and classified data. It is a square matrix of 

order n where n is the number of classes with rows having the predicted classes and the 

columns having the actual classes. The following table gives an insight about the confusion 

matrix of order 2.(42) 

Table 4-1 : Confusion matrix of order 2. 

 Predicted 

negative 

Predicted positive 

Actual negative a b 

Actual positive c d 

 

a is the number of true negative predictions which is the number of classes correctly 

classified as negative. 

b is the number of false positive predictions which is the number of classes incorrectly 

classified as positive. 

c is the number of false negative predictions which is the number of classes incorrectly 

classified as negative. 

d is the number of true positive predictions which is the number of classes correctly 

classified as positive. 
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 Precision (p): 

  Precision is the proportion of correct positive classifications from the samples that 

are predicted as positive. In this case it measures the percentage of images correctly 

identified as having the disease among all the images identified as having the disease. 

By using the above example of confusion matrix, precision is calculated as follows 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
=  

𝑑

𝑑 + 𝑏
 

 

 Recall (r): 

Recall is the ratio of the number of positive samples predicted as positive to the 

actual number of positive samples. In our case it measures the proportion of actual images 

with disease among the images identified as having disease. 

     

𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
=

𝑑

𝑑 + 𝑐
 

 

 Receiver Operating Characteristic (ROC): 

  ROC is a graph plotted between True Positive Rate (also known as Recall) on Y 

axis against False Positive Rate on X axis. It depicts the relative tradeoffs between benefits 

(true positives) and costs (false positives) at various threshold settings. 

False positive rate is the ratio of the number of samples which are predicted incorrectly to 

the actual number of negative samples. From the above example of confusion matrix, False 

Positive Rate is calculated as follows - 

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 =  
𝑏

𝑏 + 𝑎
 

Each point plotted in ROC is an ordered pair of Recall and False Positive Rate. A classifier 

has better performance characteristics if the curve is towards the upper left and close to X 

axis since it results in high value of Recall (43). 
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 Accuracy: 

  Classification accuracy is defined as the proportion of correct classifications among 

all classifications. It is calculated as the ratio of the sum of number of true positives and 

true negatives to the total number of samples. 

From the above example of confusion matrix, the accuracy is  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑎 + 𝑑

𝑎 + 𝑏 + 𝑐 + 𝑑
 

 

 F measure: 

  F1 score is the harmonic mean of Precision and Recall. It is a measure of accuracy 

of a classifier. High F measure indicates the best performance as both the precision and 

recall of the system are high. 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  
2 ∗ 𝑝 ∗ 𝑟

𝑝 + 𝑟
 

 Correlation: 

  Correlation defines the strength of association between two continuous variables. 

It is measured by a value called Correlation coefficient whose value typically lies between 

-1 and +1. The closer the value of coefficient to either -1 or +1 the stronger is the relation 

between both variables. Positive coefficient value indicates the directly proportional 

relation whereas the negative correlation value indicates the inversely proportional relation 

between the variables. 

Pearson Correlation Coefficient: 

  It is the ratio of the covariance of two variables to their product of the standard 

deviation where covariance of two variables is the expected value of the product of their 

derivations from their individual expected values. This coefficient gives more accurate 

values if the variables are normally distributed. 

𝑟 =  
∑ (𝑥𝑖 − 𝑥𝑚

𝑛
𝑖=1 )(𝑦𝑖 − 𝑦𝑚)

√∑ (𝑥𝑖 − 𝑥𝑚)2𝑛
𝑖=1 ∗ ∑ (𝑦𝑖 − 𝑦𝑚)2𝑛

𝑖=1

 

 𝑥𝑖 and 𝑦𝑖 are the individual values of variables x and y respectively. 

𝑥𝑚 and 𝑦𝑚 are the expected values (mean) of x and y respectively (44). 
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Spearman Correlation Coefficient: 

  Unlike the Pearson’s Coefficient, this coefficient does not assume that the variables 

are normally distributed. It defines the strength of monotonic relationship between two 

variables. The variables must be monotonically increasing or decreasing (If one variables 

increases, the second variable should never decrease and vice-versa) and not necessarily 

linear. It is obtained by performing Pearson Correlation Coefficient on the ranked variables. 

Ranking is done by assigning the lowest value of 1 and the next lowest 2 and so on. 

𝑟𝑠 =  1 −
∑ 𝑑𝑖

2𝑛
𝑖=1

𝑛(𝑛2 − 1)
 

𝑑𝑖 is the difference in ranks of x and y  

n is the number of samples of x and y 

 Steatosis 

I. Training Data 

The training data for learning the macrosteatosis model is the white regions 

annotated by Dr. C, including 2256 macrosteatosis annotations from 11 liver biopsy 

images. The training data for learning the microsteatosis model was polygonal regions 

annotated as microsteatosis by Dr. C, including 570 microsteatosis annotations from 5 liver 

biopsy images. 

 

II. Test Data 

  The test data to detect macrosteatosis comprises of 27 slides which provided with 

semi-quantitative grades given by Dr. C. The test data to detect microsteatosis comprises 

of 11 slides. These slides are processed and a random set of 10 sub-slides each identified 

as microsteatosis by the built classifier are validated by Dr. C. 

 

III. Detection and quantification results 

  In this study, the supervised machine learning models built to detect macrosteatosis 

and microsteatosis are subjected to 10-fold cross validation. The training data comprised 

of the annotated data given by the expert pathologists. All the present white regions could 

not be used for the building of this model as it involved a lot of overlapped annotations. 
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 For the macrosteatosis model, sinusoids and micro fat labels were not taken into 

consideration because their annotations had a few overlaps with the other set of white 

region classes and also, sinusoids were not extracted accurately during the white region 

extraction because they are very tiny set of white regions and may be ignored during the 

thresholding.  

  For the microsteatosis model, it consisted of only two classes namely, 

microsteatosis regions and non-microsteatosis regions. The non-microsteatosis regions 

comprise of all the other white region areas mentioned in the Table 4-2. Because of the 

irregularity/imbalance associated with the number of annotations (568 micro fat, 2296 

macro fat, 117 central vein, 121 bile duct, 75 portal vein and 22 portal artery), a random 

subset of annotated data are removed and the rest is used for training. The feature extraction 

is done pixel-wise and therefore, we randomly subsample 0.02% of the microsteatosis data 

and 0.001% of any other white region extracted feature. Evaluation of accuracy of macro- 

and microsteatosis identification was performed using a 10-fold cross validation in the 

training set. For macrosteatosis prediction, the model’s precision, recall (sensitivity) and 

area under the receiver operator characteristic (AUROC) were 94.2%, 95%, 99.1%, 

respectively.  The classifier’s accuracy was 84.2%.  

  When correlated with the pathologist’s semi-quantitative grade of macrosteatosis, 

the model fits with a coefficient of determination 𝑅2 value of 0.905. Figure 4-1 shows the 

2𝑛𝑑  order polynomial curve fitted to the data points. The strong correlation between 

quantitative results obtained by the algorithm developed in this study for estimating the 

percentage macrosteatosis and the pathologist macrosteatosis grades are shown in  

Figure 4-2 (p=0.01 after performing two-sample t-test with a degree of freedom of 26). 

Table 4-2 shows the confusion matrix of the model built for macrosteatosis prediction. 
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Table 4-2 : The confusion matrix and metrics for the model built to detect macrosteatosis. 

 

For microsteatosis prediction, the model’s precision, recall and AUROC were 

79.2%, 77%, 78.1%, respectively. The classifier’s accuracy was 78.7%. Table 4-3 shows 

the confusion matrix of the model built for microsteatosis prediction.  

 

Table 4-3 : The confusion matrix and metrics for the model built to detect microsteatosis. 

Actual Predicted  

 Micro Fat Others PRECISION (%) 

Micro Fat 7109 1862 79.24 

Others 2116 7660 78.35 

RECALL (%) 77.06 80.445 
 

 

  Figure 4-3 presents a visual summary of the performance metrics for the different 

steatosis identification models developed using supervised machine learning methods 

described above.  

 

Actual Predicted 

 Central 

Vein 

Macro 

Fat 

Bile 

Duct 

Portal 

Vein 

Portal 

Artery 

PRECISION 

(%) 

Central Vein 230 8 0 25 0 87.45 

Macro Fat 6 343 0 12 0 95.01 

Bile Duct 0 1 17 27 5 30.91 

Portal Vein 15 8 14 298 2 87.9 

Portal Artery 2 4 4 7 13 37.14 

RECALL 

(%) 
90.91 94.23 41.46 79.25 52  
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Figure 4-1 : A scatter plot showing correlation between model-computed percentage steatosis for 

mouse biopsies with respect to the corresponding pathologist grade. 

 

 

Figure 4-2 : Mixed line/bar chart showing the correlation between the computed percentage 

steatosis with the expert pathologist grade. The pathologist grade for mouse samples is shown as 

a bar matching the left axis, and the computed percentage steatosis is shown as a line matching the 

right axis. 
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Figure 4-3 : A graph which represents the different steatosis models generated and their respective 

metrics. 

 

  The expert pathologist validated the classification results on unseen slides for 

detection of steatosis. For macrosteatosis, evaluation by the study expert pathologist of the 

accuracy of predictions made on biopsy samples images unseen previously by the classifier, 

showed 100% accuracy. For microsteatosis, of the one hundred and ten random sub slides 

the detection accuracy was 63%. The pathologist also confirmed that for every unseen slide, 

the classifier had accurately detected microsteatosis on at least one sub slide (i.e., 100% 

sensitivity for detecting any microsteatosis). It is practically impossible for the pathologist 

to label the massive number of macro- or microsteatosis lesions present on an individual 

slide, but the classifier can do that automatically. Here we show examples in Figure 4-4 

(for macrosteatosis) and Figure 4-5 (for microsteatosis), where both the pathologist’s and 

classifier’s labels fell on the same lesion in the hepatocytes but the classifier correctly 

labeled many other lesions in the same area of the biopsy. Figure 4-6 shows an example of 

misclassified microsteatosis.  

  Other histological features of fatty liver such as lobular inflammation or ballooning, 

or artifacts on the slides did not affect the performance of the model for detection of 

macrosteatosis, as evidenced by the 100% accuracy of the classifier. However, they did for 

microsteatosis, where ballooning or artifact was confused by the classifier as microsteatosis 

in some mislabeled cases by the classifier (Figure 4-6). 
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Figure 4-4 : Comparison of annotated macrosteatosis lesions by Pathologist v/s our model.  

The left slide contains annotations given by the pathologist (marked as a point in magenta).  

The right slide contains macro fat lesions detected by the model (marked as point in dark blue). 

 

 

Figure 4-5 : Comparison of annotated microsteatosis lesions by Pathologist v/s our model.  

The left slide contains annotations given by the pathologist (marked as polygons in dark blue).  

The right slide contains micro fat lesions detected by the model (marked as polygons in green). 
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Figure 4-6 : Some misclassified instances of microsteatosis lesions. The left slide contains no 

micro fat according to the pathologist. The right slide contains wrongly classified micro fat lesions 

detected by the model (marked as polygons in green). 

 Lobular and Portal Inflammation 

I. Training Data 

The training data for learning the inflammation model involves the dark regions 

annotated by the expert pathologists, including 163 portal inflammation annotations and 

260 lobular inflammation annotations from 16 liver biopsy images annotated by Dr. C and 

340 portal inflammation annotations and 347 lobular inflammation annotations from 16 

liver biopsy images annotated by Dr. K. 

II. Test Data 

  In order to evaluate the models built to detect both lobular inflammation and portal 

inflammation, 18 unseen slides have been used. The slides are processed and a random set 

of 107 sub-slides are chosen to validate lobular inflammation and 113 sub-slides are chosen 

to validate portal inflammation by the expert pathologists (both Dr C and Dr K). 

III. Detection and quantification results 

  In this study, the supervised machine learning models built to detect macrosteatosis 

and microsteatosis are subjected to 10-fold cross validation. The training data comprised 

of the annotated data given by the expert pathologists. All the present dark regions were 

used by Morusu et al. in their study (5, 6), in this research we have experimented with only 

four of the many dark regions present in the liver biopsy namely, lobular inflammation, 

portal inflammation, normal hepatocyte and bile duct. The results are encouraging, 
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however there can be changes made to the built classifier to reduce the misclassification of 

histological features. 

 Annotations were provided by both the expert pathologists (in total, 503 portal 

inflammation annotations and 607 lobular inflammation annotations). There have been 

many annotation overlaps and therefore, this affects the classifier to some extent. As there 

are only four classes that have been analyzed in this experiment, the relative set of 

annotations being left out is small. For portal inflammation prediction, the model’s 

precision, recall (sensitivity) and area under the curve operator characteristic (AUROC) 

are 86%, 77.1% and 93.2% for portal inflammation and 79.6%, 77.1% and 93.2% for 

lobular inflammation respectively. The overall classifier’s accuracy is 83.6%.  

 

Figure 4-7 : A graph which represents the different inflammation models generated and their 

respective metrics. 

 

  For testing purposes, 18 unseen samples were processed and sent through the 

classifier to detect lobular and portal inflammation respectively. The ratio of each of the 

lobular and portal inflammation areas with the tissue areas is computed and correlation is 

performed with the semi-quantitative grades provided with the expert pathologists. The 

spearman correlation coefficient when lobular and portal inflammation areas are 

compared with Dr. K’s grades are 0.71 and 0.85 and for that of Dr. C’s grades are 0.65 

and 0.62, respectively.  
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Actual Predicted 

 Lobular 

Inflammation 

Normal 

Hepatocyte 

Portal 

Inflammation 

Bile 

Duct 

PRECISION 

(%) 

Lobular 

Inflammation 

4297 3 1206 64 79.6 

Normal 

Hepatocyte 

21 88 0 0 76.5 

Portal 

Inflammation 

914 24 9804 106 86.0 

Bile Duct 165 0 396 552 76.5 

RECALL 

(%) 

79.6 76.5 86.0 76.5 
 

 

 

 

Figure 4-8 : A scatter plot showing correlation between model-computed percentage portal 

inflammation for human biopsies with respect to the corresponding Dr K’s grade. 
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Table 4-4 : The confusion matrix and metrics for the model built to detect inflammation. 
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Figure 4-9 : A scatter plot showing correlation between model-computed percentage lobular 

inflammation for human biopsies with respect to the corresponding Dr K’s grade. 

 

 

Figure 4-10 : A scatter plot showing correlation between model-computed percentage portal 

inflammation for human biopsies with respect to the corresponding Dr C’s grade. 
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Figure 4-11 : A scatter plot showing correlation between model-computed percentage lobular 

inflammation for human biopsies with respect to the corresponding Dr C’s grade. 

 

 

 

Figure 4-12 : A scatter plot showing correlation between model-computed percentage portal 

inflammation for human biopsies with respect to the average of Dr C and Dr K’s pathologist grade. 
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Figure 4-13 : A scatter plot showing correlation between model-computed percentage lobular 

inflammation for human biopsies with respect to the average of Dr C and Dr K’s pathologist grade. 

 

  The expert pathologists validate classification results on unseen slides for detection of 

steatosis. For lobular inflammation, evaluation by Dr K and Dr C have accuracy of 

predictions made on biopsy sample images unseen previously by the classifier as 75%  and  

91%, respectively. On the other hand, for portal inflammation, evaluation by Dr K and Dr 

C have accuracy of predictions made on biopsy samples images unseen previously by the 

classifier as 62.9%  and  84.97%, respectively. Both expert pathologists also confirmed that 

for every unseen slide, the classifier has accurately detected lobular inflammation and portal 

inflammation on at least one sub slide (i.e., 100% sensitivity for detecting any type of 

inflammation). 

  Other histological features of fatty liver such as normal parenchyma or ballooning, or 

artifacts on the slides have affected the performance of the model for detection of any kind 

of inflammation, as evidenced by the validation of unseen samples done by Dr K. 

 Fibrosis 

I. Training Data 

The training data associated to detect fibrosis and its types is based on the blue 

regions annotated by the expert, for this study only Dr K’s annotations have been used. 

y = 1.6391ln(x) + 7.2459

0

0.5

1

1.5

2

2.5

3

3.5

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

P
at

h
o

lo
gi

st
 G

ra
d

e

Model Prediction Grade

Lobular Inflammation



www.manaraa.com

60 

 

Dr.C’s annotations are present for some types of fibrosis but not all, hence they have not 

been used as part of this study. Dr. K has annotated blue regions, including 186 normal 

fibrosis annotations, 118 portal fibrosis annotations, 128 pericellular annotations, 127 

periportal annotations, 98 bridging annotations and 61 nodule annotations from a set of 18 

liver biopsy images. 

 

II. Test Data 

  The test data to detect the blue regions i.e. the amount of collagen content comprises 

of 18 liver biopsy TC stained slides which are semi-quantitively graded by both the expert 

pathologists. 

 

III. Detection and quantification results 

  In this study, the supervised machine learning models built to detect if a patient is 

affected by abnormal fibrosis and also detect the different types of fibrosis associated are 

subjected to 10-fold cross validation. The training data comprised of the annotated data 

given by the expert pathologists. All the present blue regions could not be used for the 

building of the models which were used to detect fibrosis and its types as it involved a lot 

of overlapped annotations. This is one of the prime reasons for the detection results to be 

comparatively low compared to that of steatosis and inflammation detection. The Figure 

4-14 gives an example of blue region extraction using the method described above in 

Section 3.6.1. 

 

 

Figure 4-14 : An example of blue region detection in a TC Stained sub-slide.   

A) A TC Stained sub-slide. B) Blue regions in the TC Stained sub-slide. 
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  The first experiment conducted involves quantification of the collagen content in 

liver biopsies and correlating the same with the semi-quantitative grades of the experts. 

The amount of collagen content is detected by calculating the blue region areas and 

performing a weighted averages sum of the pixel values in the blue band and thus, taking 

the ratio of the blue region area with the tissue area. The conclusion of this study is that 

even though there can be loads of collagen content in a liver biopsy, it need not necessarily 

imply that the patient is highly affected with fibrosis. For this experiment, a total of 18 

slides were processed and the percentage of collagen in each of them is computed. The 

coefficient of determination of collagen area with Dr. K’s grades is 0.607 and with Dr. C’s 

grades is 0.867. Hence, it is important to categorize the type of fibrosis associated in a liver 

biopsy to determine at what extent a person is affected with NAFLD. 

 

 

Figure 4-15 : A scatter plot showing correlation between model-computed percentage collagen 

content for human biopsies with respect to the Dr K’s pathologist grade. 
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Figure 4-16 : A scatter plot showing correlation between model-computed percentage collagen 

content for human biopsies with respect to the Dr C’s pathologist grade. 

 

 

 

Figure 4-17 : A bar graph which shows semi-quantitative grades given by both Dr. K and  

Dr. C for the given test set of 17 human liver slides. 
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 Normal 

I. Training Data  

The training data used to detect Normal Fibrosis consists of blue regions 

annotated by expert Dr. K. These regions contain 186 normal fibrosis annotations and 

532 abnormal fibrosis annotations (including the annotations like pericellular, portal, 

periportal, bridging and nodules) from a set of 9 human liver biopsy images. 

 

II. Model Metrics 

In this system, the built machine learning model identifies normal fibrosis 

annotations among the given test data. Table 4-5 represents the confusion matrix which 

gives an insight about the classified results of normal fibrosis and abnormal fibrosis 

annotations. The model predicted 535 annotations as normal and 565 annotations as 

abnormal with the precision of 85.6% and the recall of 83.3%. The Area under Curve 

of Receiver Operating Characteristics (AUROC) is 91.9%. 

 

Table 4-5 : The confusion matrix for the model built to detect Normal Fibrosis. 

Actual Predicted  

  Normal Abnormal 

Normal 458 92 

Abnormal 77 473 

     

 Pericellular 

I. Training Data 

The training set used to detect the pericellular fibrosis annotations comprises of 

the blue regions from a set of 6 human biopsy liver images annotated by the expert Dr. 

K. The expert identified 128 annotations as pericellular and 555 annotations as the other 

types like fibrosis, portal, periportal, bridging and nodules. 
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II. Model Metrics 

In this system, the model predicted 137 annotations as pericellular and 115 

annotations as others from the Test Data. The classified annotations by the model are 

shown in the confusion matrix represented by the table 4-6. The precision of the 

classification model is 76.6% and the recall is 82.7%. 

 

  Table 4-6 : The confusion matrix for the model built to detect Pericellular Fibrosis. 

Actual Predicted  

  Pericellular Others 

Pericellular 105 22 

Others 32 93 

 

 Portal 

I. Training Data 

The training set used to identify the portal fibrosis annotations comprises of 

blue regions classified as 118 portal annotations and 565 other annotations (like 

normal, pericellular, periportal, bridging and nodules) from a set of 6 human liver 

biopsy images by the expert Dr. K. 

 

II. Model Metrics 

The model classified the test data as 365 portal annotations and 293 other 

annotations with a precision of 77% and a recall of 84.4%. The comparison between 

the actual and predicted annotation results is shown in the confusion matrix 

represented by the table 4-7.  
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Table 4-7 : The confusion matrix for the model built to detect Portal Fibrosis.  

Actual Predicted  

  Portal Others 

Portal 281 52 

Others 84 241 

 

 Periportal 

I. Training Data 

The training set contains the blue regions annotated as periportal fibrosis 

and other fibrosis annotations (like normal, pericellular, portal, bridging and 

nodules) by the expert Dr. K. The expert Dr. K identified 127 periportal fibrosis 

annotations and 556 other annotations from 6 different human liver biopsy images. 

 

II. Model Metrics 

The table 4-8 portrays the confusion matrix with the actual and predicted 

periportal and other annotations. The model correctly identified 129 periportal 

annotations and 117 other annotations with the precision and recall of 72.1% and 

76.9% respectively. 

 

Table 4-8 : The confusion matrix for the model built to detect Periportal Fibrosis. 

Actual Predicted  

  Periportal Others 

Periportal 93 28 

Others 36 89 
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 Bridging 

I. Training Data 

The training set used to identify bridging fibrosis annotations is selected 

across 9 human liver biopsy images by the expert Dr. K. The annotations contain 

98 bridging fibrosis and 620 other fibrosis (like normal, pericellular, portal, 

periportal and nodules). 

 

II. Model Metrics 

The classification results are interpreted as a confusion matrix shown in the 

table 4-9. The model predicted 2159 bridging fibrosis annotations with a precision 

of 84.9% and a recall of 91.7%. 

 

  Table 4-9 : The confusion matrix for the model built to detect Bridging Fibrosis. 

Actual Predicted  

  Bridging Others 

Bridging 1833 167 

Others 326 1674 

 

 Nodule 

III. Training Data 

The training set used to predict the nodule fibrosis annotations is selected 

from a set of 9 human liver biopsy images. The expert Dr. K annotated the input 

images into a total of 61 nodules and 657 other fibrosis annotations (including 

normal, pericellular, portal, periportal and bridging annotations). 

 

IV. Model Metrics 

The model predicted 2040 annotations as nodules and 1960 annotations. 

The precision of the learning model is 89.8% and the recall is 91.6%. The confusion 

matrix with correct and incorrect classification is presented in the table 4-10. 
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Table 4-10 : The confusion matrix for the model built to detect Nodule Fibrosis. 

Actual Predicted  

  Nodules Others 

Nodules 1831 169 

Others 209 1791 

 

  For the detection of normal fibrosis in liver biopsies, a model is built with two 

classes – normal fibrosis and abnormal fibrosis which comprises of a random subset of all 

the different kinds of fibrosis respectively. The model thus built contains a total of 528 

features which comprise of different set of morphological features, scaled representation 

features and Gabor features (as discussed previously). Because of the irregularity of the 

annotations, random subsampling takes place to fill the abnormal fibrosis class to avoid 

overfitting of the model (886 normal fibrosis and 990 abnormal fibrosis). Feature extraction 

is done using information gain such that the top 200 attributes are chosen to build the model. 

There are two models built for the normal fibrosis detection, one with all the attributes and 

the other with top 200 attributes. The best results obtained were with the former which 

recorded a precision, recall and area under ROC (AUROC) characteristic curve of 85%, 

79.5% and 90.5% respectively. 

  In order to detect the different other types of fibrosis, morphological features, 

scaled representation features and Gabor features are computed for the annotated areas by 

Dr K and individual models are built for all the five types of fibrosis. The models thus built 

using the above methods described detect portal fibrosis, periportal fibrosis and pericellular 

fibrosis with a precision of 77%, 72.1% and 76.6% respectively. However the model did 

not give significant results for the detection of bridging fibrosis and cirrhosis.  

 The next two experimental models built involve detection of bridging fibrosis and 

cirrhosis. Cirrhosis involves detection of nodules in a liver biopsy. These are oval shaped 

hollow blue regions of different sizes. Therefore, detection of SURF features at different 

scales will determine them to be unique as at the highest possible scale, the elliptical shape 

hollow nodule collapses to a point. In the case of bridging fibrosis, there can be other types 
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of fibrosis within them. Hence, to capture the stream of blue regions across the tissue areas, 

HOG descriptors are useful. Therefore, to detect the above two mentioned types of fibrosis, 

texture features, HOG descriptors and SURF features across different scales are computed 

and  two class models involving nodules and others (a random subsampling of the other set 

of fibrosis types) as well as bridging fibrosis and others is built. There are a total number 

of 305 features that are computed which uniquely determine a blue region. The model 

results for detection of bridging fibrosis and nodules have a precision of 84.9% and 89.8%, 

respectively. 

 There are a lot of overlaps present in the given annotations for each type of fibrosis. 

The use of square annotations to annotate this kind of fibrosis is something which needs to 

be re-evaluated in the future. Some scope of improvements can be done if the annotations 

are provided in a little more accurate way, thereby reducing the conflict of two different 

types of fibrosis in the same region. 

 

Table 4-11 : The different types of fibrosis detection with their respective precisions. 

FIBROSIS TYPE PRECISION 

Normal 85.6% 

Pericellular 76.6% 

Portal 77% 

Periportal 72.1% 

 

Bridging 84.9% 

Cirrhosis 89.8% 
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5. DISCUSSION 

  The results presented above indicate that it is feasible to construct a decision support 

system for pathologists who diagnose NAFLD using a supervised machine learning approach. The 

use of such a system would minimize the variability and subjectivity present in the current semi-

quantitative grading system. 

  Pathologists can have a difference of opinion while scoring a liver biopsy slide for NAFLD, 

which is one of the main motivations to the research presented in this thesis. The pathologists 

involved in this study are well respected and experts in their field, however, the manual semi-

quantitative grading system is prone to subjectivity and variability. This has been indicated in our 

study. The correlation with the pathologist grade is an important statistic, but it is also important 

to consider the overall accuracy of the various classifiers built. The correlation with pathologist 

grade is significant based on the underlying assumption that the pathologist is 100% correct. Over 

a period of time, there is a possibility of considering this type of continuous assessment for the 

detection of NAFLD thereby, eliminating the use of pathologist semi-quantitative grades. 

  The classifiers built to detect different types of fibrosis can have better accuracies, ideally. 

There are a few points which could enhance the above set of models. Firstly, the annotations used 

to build fibrosis classifiers contain many overlaps. This can be improved by the introduction of 

new set of markers for each type of fibrosis. Secondly, the pathologists' disagreement on semi-

quantitative grades indicate that the correlation analysis performed on each their scores yield better 

results as compared to pathologist to pathologist correlation. The inclusion of many number of 

pathologists could help building widely accepted classifiers and eliminate variability. Thirdly, the 

use of random subset of slides for validation can be subject to unevenness i.e. there is a possibility 

that some of the randomly chosen sub-slides can in fact belong to the negative class. 

  Finally, performance of this type of system is very important while introducing it in a 

clinical setting. The current execution time is not very efficient, as tools like MATLAB, WEKA 

used to develop these classifiers are very good for prototyping. The use of a programming language 

which could efficiently utilize system resources could make this process faster compared to the 

current system. 
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6. CONCLUSION 

  The above section elaborates on the promising results for determining various histological 

features in liver biopsies (both mice and human) which can help detect NAFLD. The use of various 

image processing techniques involved to generate unique set of features which are then used to 

build supervised machine learning models is therefore, a unique and more accurate measure of 

detecting different anatomical and histological features in biopsies as there can be enumerable 

number of slides and it becomes tough for a pathologist to not miss any of them. Hence, it also 

reduces the inter-observer and intra-observer error associated while performing the semi-

quantitative assessment by the pathologists. 

  For all our experimental studies conducted, we receive the annotations and the semi-

quantitative grades from the expert pathologists who are considered the “gold standard” in the field 

of histopathology. Despite the fact the pathologists are one of the best in their areas, there is a 

definite disagreement between them while grading slides. This clearly accounts to our process of 

quantification and detection of different histological set of features, which would be very 

beneficial for the doctors in the field of Hepatology and Pathology. This tool has been built to 

serve as a utility to the doctors and not to replace their existence. 

  The improvements done to the models which determine the steatosis area in a liver biopsy 

clearly indicate that this tool is “ready for use” in clinical trials for detecting macrosteatosis and 

microsteatosis as mentioned by Morusu et al. in their study (5, 6). Apart from this, the encouraging 

results for detection of both the types of inflammation indicate that with more improvements put 

in place, this tool can be used soon by doctors in their clinical trials. In this study, the addition of 

detecting collagen in liver biopsies and also categorizing the different types of fibrosis in a liver 

biopsy is a step in the right direction to build a fully automated tool to detect NAFLD in mice and 

humans.  

  The current constraint for this tool however lies in the fact that, it takes time to evaluate 

the above mentioned histological features. Having said that, improvements have been made to 

make it a speedy robust system and running the same using various big data technologies should 

be a boost as we move forward. 
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